Hidden Markov Models Incorporating Fuzzy Measures and Integrals for Protein Sequence Identification and Alignment

نویسندگان

  • Niranjan P. Bidargaddi
  • Madhu Chetty
  • Joarder Kamruzzaman
چکیده

Profile hidden Markov models (HMMs) based on classical HMMs have been widely applied for protein sequence identification. The formulation of the forward and backward variables in profile HMMs is made under statistical independence assumption of the probability theory. We propose a fuzzy profile HMM to overcome the limitations of that assumption and to achieve an improved alignment for protein sequences belonging to a given family. The proposed model fuzzifies the forward and backward variables by incorporating Sugeno fuzzy measures and Choquet integrals, thus further extends the generalized HMM. Based on the fuzzified forward and backward variables, we propose a fuzzy Baum-Welch parameter estimation algorithm for profiles. The strong correlations and the sequence preference involved in the protein structures make this fuzzy architecture based model as a suitable candidate for building profiles of a given family, since the fuzzy set can handle uncertainties better than classical methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Hidden Markov Models: A New Approach In Multiple Sequence Alignment

This paper proposes a novel method for aligning multiple genomic or proteomic sequences using a fuzzyfied Hidden Markov Model (HMM). HMMs are known to provide compelling performance among multiple sequence alignment (MSA) algorithms, yet their stochastic nature does not help them cope with the existing dependence among the sequence elements. Fuzzy HMMs are a novel type of HMMs based on fuzzy se...

متن کامل

A generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences

The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...

متن کامل

Generalized hidden Markov models. I. Theoretical frameworks

This is the first paper in a series of two papers describing a novel generalization of classical hidden Markov models using fuzzy measures and fuzzy integrals. In this paper, we present the theoretical framework for the generalization and, in the second paper, we describe an application of the generalized hidden Markov models to handwritten word recognition. The main characteristic of the gener...

متن کامل

Generalized Hidden Markov Models—Part I: Theoretical Frameworks

This is the first paper in a series of two papers describing a novel generalization of classical hidden Markov models using fuzzy measures and fuzzy integrals. In this paper, we present the theoretical framework for the generalization and, in the second paper, we describe an application of the generalized hidden Markov models to handwritten word recognition. The main characteristic of the gener...

متن کامل

Generalized hidden Markov models. II. Application to handwritten word recognition

This is the second paper in a series of two papers describing a novel approach for generalizing classical hidden Markov models using fuzzy measures and fuzzy integrals and their application to the problem of handwritten word recognition. This paper presents an application of the generalized hidden Markov models to handwritten word recognition. The system represents a word image as an ordered li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2008